DIFFERENCES IN SOME CONSTITUENTS, ENZYMES ACTIVITY AND ELECTROPHORETIC CHARACTERIZATION OF DIFFERENT RAPESEED (Brassica napus L.) CULTIVARS

Hossam Saad EL-BELTAGI¹, Amal Amin MOHAMED², Bahaa El-Din Bastawy MEKKI³

¹Biochemistry Dept., Faculty of Agriculture, Cairo University- Cairo, Egypt
²Plant Biochemistry Dept., National Research Centre, Dokki, Cairo- Egypt
³Field Crops Research Dept., National Research Centre, Dokki, Cairo- Egypt

Corresponding author: Amal A. Mohamed, Plant Biochemistry Dept., National Research Centre, El Behouth St., P.O. Box 12311, Dokki, Cairo- Egypt. phone: (+20) 33561235, Mobile: (+2)0106216110, Fax: (+20) 37610850, e-mail: amin_amal@yahoo.com

Abstract. Rapeseed is one of the most important oilseed crops cultivated in many parts of the world and used as a source of edible oil for human consumption. The present work reports some phytochemical and nutritional potentials of different rapeseed cultivars with a view to exploit their benefits for human nutrition. Five rapeseed cultivars namely, pactol, silvo, topas, serw 4 and serw 6 were analyzed for their phytochemical constituents (such as glutathione, ascorbate, phenolic, flavonoid contents) and some antioxidant enzymes activity (i.e. GPX; guaiacol peroxidase, APX; ascorbate peroxidase, CAT; catalase, SOD; superoxide dismutase) together with their protein profile. Among all cultivars significant variations in glutathione, ascorbate, phenolic and flavonoid contents were observed. The highest DPPH radical scavenging activity of the extract was observed in topas cultivar. Minor variations were noticed in SDS-PAGE protein profile. The results of the study suggest the phytochemical and nutritional potentials of B. napus seeds for human and other animal uses due to their extensive consumption in the world.

Keywords: Antioxidant enzymes, DPPH, Phytochemical compounds, Rapeseed, SDS-PAGE, Total phenolic.

INTRODUCTION

Most vegetable oils are edible and have been used in food preparation to make it more palatable and nutritious. Vegetable oils contain a mix of monounsaturated, and polyunsaturated fatty acids which decrease the low-density lipoprotein (LDL) cholesterol in the blood and thus prevent heart complications such as angina [17]. Rapeseed (Brassica napus L.) is one of the most important oilseed crops and considered as the most promising oil crops characterized with high seed oil content (40-45%). Cultivation of rapeseed in Egypt may provide an opportunity to overcome some of the local deficit of crop edible oil production [14, 48]. When compared to other edible oils, the rapeseed oil has the lowest amount of harmful saturated fatty acids. It also contains adequate amounts of the two essential fatty acids, linoleic and linolenic, which are not present in many other edible oils [36]. Rapeseed oil contains both omega-6 and omega-3 fatty acids in a ratio of 2:1, they are quite helpful in protecting against fatal heart disease and have anti-inflammatory effects [23]. Recently special attention has been paid towards Cruciferous or Brassica vegetables, especially those that are rich in secondary metabolites (frequently called phytochemicals) and there is now increasing interest in antioxidant activity of such phytochemicals present in the diet [40]. These naturally occurring compounds present in vegetable oils are believed to have strong anti-oxidative properties, act by scavenging harmful reactive oxygen species (ROS). These incomplete reduced oxygen species are toxic by-products, generated at low levels in non-stressed plant cells in chloroplasts and mitochondria [35]. However, plants possess enzymatic systems that protect them against H₂O₂ and other harmful ROS. These include guaiacol peroxidase (GPX; EC 1.11.1.7), ascorbate peroxidase (APX; EC 1.11.1.11), superoxide dismutase (SOD; EC 1.15.1.1) and catalase (CAT; EC 1.11.1.6). SOD converts superoxide radicals to hydrogen peroxide and, APX, GPX, CAT converts H₂O₂ to water and oxygen. Plants also contain non-enzymatic antioxidant compounds, e.g. ascorbic acid (AsA), reduced glutathione (GSH), α-tocopherol, phenolic and flavonoids [58]. These compounds may exert their activity by suppressing the production of harmful active species. Recent reports suggest that Brassica vegetables act as good source of natural antioxidants due to high levels of carotenoids, tocopherol and ascorbic acid [19]. Phenolic compounds exist widely in plants and play an important role as defense compounds. However, some trials aim to include the rapeseed sprouts in human nutrition because of their content of ascorbic acid [60], tocopherols [62], reduced glutathione [63], dietary fiber [61], and higher total antioxidant status [26] when compared to the ungerminated rapeseeds. In general, genetic improvement of crops can be accelerated when broad genetic diversity and the information of these genetic resources are available. Research on Brassica germplasm could enhance the edible oil production and nutritional benefits of these crops. At the same time it is necessary to develop better methods of characterization and evaluation of germplasm collections, to increase the utilization of plant genetic resources. In this concern, fatty acids, total tocopherol and phenolic contents could be used as selection criteria for developing genotypes with modified seed quality in Brassica napus [10]. Rapeseed is a rich source of protein (between 30 and 45%), and therefore defatted rapeseed meal may constitute a good source of protein for humans [13]. Protein isolates obtained from defatted rapeseed meal, free of anti-nutritional components such
as glucosinolate, phenols or phytic acid may be used for the fortification of foods [7, 59]. The electrophoresis of seed storage protein is a method to investigate genetic variation and to classify plant varieties [24]. Seed protein is not sensitive to environmental fluctuations; its banding pattern is very stable and could be important supplemental method for cultivars identification [54]. Seed storage protein is useful tool for studying genetic diversity of wild and cultivated rice [55]. However, the information on the SDS-PAGE on different species of Brassica for genetic diversity is still limited [43]. Analyses of SDS-PAGE are simple and inexpensive, which are added advantages for use in practical plant breeding. Therefore, the aims of this study were to (a) determine the chemical composition of five cultivars of rapeseeds and (b) assess the protein polymorphisms.

MATERIALS AND METHODS

Plant materials
Five cultivars of rapeseed (B. napus) were used in this study namely, patcol, silvo, topas (French origin cultivars), serw 4 and serw 6 (Egyptian origin cultivars). Seeds were obtained from Egyptian Ministry of Agriculture, and cultivated under Egyptian environmental conditions at the experimental farm of National Research Centre, Egypt. The practices of field preparation, optimum fertilizer applications and irrigation were standard for rapeseed culture as described previously [34]. When seeds matured, the plants were harvested and the immature and the mature seeds were dried in the sun light and stored in refrigerator (4°C) until further use.

Preparation of seed flour
After removing the immature and damaged seeds, the mature seeds of five different accessions of rapeseeds were dried in the open sunlight for 2 days. A known weight of samples from each cultivar was air dried seeds and ground to fine powdered in a Wiley Mill. The fine seed powder was stored in screw-cap bottles until further use.

Determination of reduced glutathione (GSH)
Seeds powder was added to 2 ml ice-cold 5% (w/v) sulphosalicylic acid solution. The mixture centrifuged for 30 min at 10000 ×g then the supernatants were collected and immediately assayed. Glutathione was measured with Ellman’s reagent [49]. 300 µl of the supernatant was mixed with 1.2 ml of 0.1 M phosphate buffer solution (pH 7.6). After a stable absorbance reading of 412 nm was obtained, 25 µM 5,5’-dithiobis (2-nitrobenzoic acid) (DTNB) was added, and the increase in absorbance at 412 nm was monitored (Σ412 = 13.6 mM⁻¹ cm⁻¹).

Determination of ascorbic acid (AsA)
Levels of AsA were measured according to the procedure described [51]. Seeds powder was added to 3 ml of 5% (w/v) trichloroacetic acid (TCA) and centrifuged at 18000 ×g for 15 min. AsA was determined in a reaction mixture consisting of 0.2 ml of supernatant, 0.5 ml of 150 mM phosphate buffer (pH 7.4, containing 5 mM EDTA) and 0.2 ml of deionized water. Color was developed in reaction mixture containing 0.4 ml of 10% (w/v) TCA, 0.4 ml of 44% (v/v) phosphoric acid, 0.4 ml of α,α-dipryridyl in 70% (v/v) ethanol and 0.2 ml of 3% (w/v) FeCl₃. The reaction mixtures were incubated at 40°C for 40 min. and the absorbance was read at 532 nm.

Preparation of methanolic extracts
The extracts were prepared according to [32]. Briefly, 5.0 g of the dried powder from each cultivar was refluxed with 50 ml methanol 80% in a water bath at 45°C for 3 h. The extracts were filtered and dried under vacuum at 45°C using a rotary evaporator, and the extraction was repeated twice. The resulting residue was re-dissolved in methanol 80% and used for the determination of total phenolic, flavonoid and antioxidant activity.

Determination of total phenolic content
Total phenolic content of each extracts was determined by using the Folin-Ciocalteu reagent [52]. Methanolic extract (0.5 ml), 0.5 ml of Folin-Ciocaltceu reagent, 10 ml of 7.5% sodium carbonate and deionized water were added to a final volume of 25 ml. After 1 h, the absorbance of the sample was measured at 725 nm against a blank by spectrophotometer. Gallic acid was used as the standard for preparing the calibration curve. The results were expressed as mg of gallic acid equivalent per gram of dried samples.

Determination of flavonoids
Colorimetric aluminum chloride method was used for flavonoid determination [37]. The methanolic extract (250 µl) was mixed with 1.25 ml of distilled H₂O and 75 µl of 5% NaNO₂ solution. After 5 min, 150 µl of 10% AlCl₃ solution was added and filtered. Then 500 µl of 1.0 M NaOH and 275 µl of distilled H₂O were added to the mixture. The absorbance of the sample was measured at 510 nm against a blank by spectrophotometer. The results were expressed as mg of quercetin equivalent per gram of dried samples.

Determination of free radical scavenging activity (DPPH assay)
Quantitative measurement of radical scavenging properties of different rapeseed cultivars was carried out [30]. Briefly, 0.1 mM solution of 2,2-diphenyl-1-picryl-hydrazyl (DPPH) in methanol was prepared and 1 ml of this solution was added to 3 ml of each methanolic extract at one concentration (150 µg/mL). Butylated hydroxytoluene (BHT) was used as a positive control. Discoloration was measured at 517 nm after incubation for 30 min. Measurements were taken at least in triplicate. The capacity to scavenge the DPPH radical was calculated using the following equation:

DPPH scavenging effect (%) = ADPPH – AS / ADPPH x100

Where, ADPPH is the absorbance of the DPPH solution and AS is the absorbance of the solution when the sample extract is added.

Enzymes extraction and activity assay
The seeds were ground and defatted by using hexane in order to remove most of the fat from the
seeds material before enzymes extraction. The resulting defatted rapeseed flour (0.5 g) was extracted with 4 ml of ice cold extraction buffer (250 mM sucrose and 25 mM tris, pH 7.2). The homogenate was centrifuged at 16000 x g for 20 min at 4°C and supernatant was used to determine the activity of GPX, APX, CAT and SOD. Guaiacol peroxidase activity (GPX; EC 1.11.1.7) activity was assayed by monitoring the increase in absorbance at 470 nm due to the oxidation of guaiacol (extinction coefficient = 26.6 mM⁻¹ cm⁻¹) [20]. The reaction mixture contained 50 mM sodium-acetate buffer (pH 5), 20 mM guaiacol, 40 mM H₂O₂, and 0.05 ml enzyme extract diluted 6 times. Ascorbate peroxidase activity (APX, EC 1.11.1.11) was measured by estimating the rate of ascorbate oxidation (extinction coefficient 2.8 mM⁻¹ cm⁻¹). Enzyme activity was determined by the decrease in absorbance of ascorbate at 290 nm [38]. The reaction mixture consisted of enzymatic extract, 50 mmol l⁻¹ sodium phosphate buffer, pH 7, 0.5 mmol l⁻¹ ascorbate, 0.1 mmol l⁻¹ hydrogen peroxide and 0.1 mmol l⁻¹ EDTA, in a 0.3 ml final volume. The reaction started after the hydrogen peroxide addition. The molar extinction coefficient (2.8 mmol⁻¹ cm⁻¹) was used to calculate ascorbate peroxidase activity. Catalase activity (CAT; EC 1.11.1.6) was determined as H₂O₂ consumption measured as the decrease in absorbance at 240 nm [16]. The assay contained 50 mM phosphate buffer (pH 7), 10 mM H₂O₂ in phosphate buffer, 0.1 ml enzyme extract. Extinction coefficient of 40 mM⁻¹ cm⁻¹ was used to calculate catalase activity. Superoxide dismutase activity (SOD; EC 1.15.1.1) was measured by the photochemical method as described by SOD activity assay [15]. One unit of the enzyme activity was defined as the amount of enzyme required to result in a 50% inhibition of the rate of nitro blue tetrazolium (NBT) reduction measured at 560 nm in the presence of riboflavin and light. The reaction mixture contained 45 mM potassium phosphate buffer, pH 7.0, containing 0.1 mM EDTA and 13 mM methionine, 0.17 mM NBT in ethanol, 0.007 mM riboflavin and enzyme aliquot. Blanks were kept in the dark and the others were illuminated for 15 min. The protein concentration of the supernatant was determined according to the Bradford method using bovine serum albumin as standard [4].

Protein extraction for SDS-PAGE

For SDS-PAGE, leaf tissues of each clones were ground to powder under liquid nitrogen and melted in ice-cold extraction buffer (50 mM Tris-HCl, pH 8, 10 mM NaCl, 1% SDS, 5% 2-mercaptoethanol, 0.1 mM PMSF, 0.1 mM DTT), followed by centrifugation at 10000 ×g at 4°C for 15 min. Protein content of the clear supernatants obtained after centrifugation were stored at −20°C until used.

One-dimensional SDS-PAGE

Proteins, 30 μg of each sample, were separated by SDS-PAGE according to the method of Laemmli [29]. The separation was performed with a 10% separating gel and a 4% stacking gel using protein vertical electrophoresis unit (Hoefer Scientific Instruments). Electrophoresis was started at 10 mA constant current until the tracking dye entered the separating gel and continued at 25 mA until the tracking dye reached the end of the gel. Protein subunit bands were stained with coomassie blue R-250 by standard techniques. The protein marker from Sigma was used. The molecular weight of standard protein (in KD) as follows: 116, 66.2, 45, 35, 25, and 18.4 KD (6 bands).

Statistical analysis

All data are reported as mean ± standard deviation (±SE) for the three independent samples (n=3). Analysis of variance and significant differences among means were tested by one-way ANOVA using the COSTAT computer package [53]. The least significant difference (LSD) at P≤0.05 level was calculated.

RESULTS

Phytochemical composition

Since oil seeds are high in antioxidants, a diet high in these oils should prevent oxidative stress, and may therefore help prevent chronic disease and slow aging. Glutathione (GSH) content of rapeseed was measured and data presented in Table (1). The results showed that there was a significant difference in the content of GSH among all rapeseed cultivars and wide variations in GSH content were observed. The highest content was recorded in topas cultivar (29.74 ±0.20 mg/g dw) followed by pactol (25.20±0.35 mg/g dw), while the lowest content was recorded in serv 6 (15.38±0.28 and 14.50 ±0.38 mg/g dw) while silvo and serv 6 recorded the lowest values (7.33± 0.18 and 3.18±0.17 mg/g dw). The results concerning phenolic contents of five varieties of *B. napus* are presented also in Table I. Significant (p<0.05) variations were found among the five cultivars, with respect to their phenolic content.

<table>
<thead>
<tr>
<th>Rapeseed cultivars</th>
<th>Glutathione (mg/g DW)</th>
<th>Ascorbate (mg/g DW)</th>
<th>Phenolic (mg/g DW)</th>
<th>Flavonoid (mg/g DW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pactol</td>
<td>25.20 ± 0.35⁸</td>
<td>14.50 ± 0.38⁸</td>
<td>34.5 ± 0.59⁸</td>
<td>29.50 ± 0.46⁸</td>
</tr>
<tr>
<td>Silvo</td>
<td>19.43 ± 0.25⁸</td>
<td>7.33 ± 0.18⁸</td>
<td>28.4 ± 0.43⁸</td>
<td>22.42 ± 0.36⁸</td>
</tr>
<tr>
<td>Topas</td>
<td>29.74 ± 0.20⁸</td>
<td>17.66 ± 0.28⁸</td>
<td>35.4 ± 0.43⁸</td>
<td>32.57 ± 0.43⁸</td>
</tr>
<tr>
<td>Serw 4</td>
<td>22.34 ± 0.30⁸</td>
<td>10.33 ± 0.22⁸</td>
<td>33.4 ± 0.23⁸</td>
<td>26.28 ± 0.24⁸</td>
</tr>
<tr>
<td>Serw 6</td>
<td>15.38 ± 0.33⁸</td>
<td>3.18 ± 0.17⁸</td>
<td>28.0 ± 0.20⁸</td>
<td>18.14 ± 0.22⁸</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td>0.527</td>
<td>0.470</td>
<td>0.84</td>
<td>0.645</td>
</tr>
</tbody>
</table>

Mean values followed by the different letters are significantly different at P<0.05. Values are expressed as the means ± SD of three independent assays.
The highest phenolic content was recorded in topas cultivar (35.4±0.45 mg/g dw) followed by pactol cultivar (34.5±0.59 mg/g dw). Whereas, the lowest phenolic content was recorded in serw 6 cultivar (29.50±0.46 mg/g dw). The rapeseed cultivars differed significantly in their antioxidant properties and ability to serve as free radical scavengers. The antioxidants compounds such as ascorbate (AsA) and glutathione (GSH) are involved in protecting plants from the active oxygen species (ROS) and their reactive metabolites. GSH plays a central role in protecting plants from ROS damage by reducing the cellular levels of thiol groups [27]. The antioxidants compounds such as ascorbate (AsA) and glutathione (GSH) are involved in scavenging of harmful ROS species (O₂, H₂O₂, ·OH)

Free radical scavenging activity (DPPH)
The rapeseed extracts showed strong antioxidant activity, by measuring their capacity to scavenge DPPH radical against the rate of peroxide formation (Fig. 1). We used BHT as standard, the scavenging effects of methanolic extracts from each rapeseeds cultivars and standard compound on the DPPH radical decreased in the order of, BHT > pactol> silvo> topas> serw 4 > serw 6 which were 67.55, 56.3, 48.2, 64.2, 51.06, and 47.03 % at the concentration of 150 μg/ml, respectively. The highest radical scavenging activity was found in topas cultivar and the lowest value was found cv. serw 6. These results may be attributed to (or paralleled with) the high content of phenolic content in the same cultivar (topas).

Table 2. Antioxidant enzymes activities of; guaiacol peroxidase (GPX), ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD) in different rapeseeds (Brassica napus L.) cultivars.

<table>
<thead>
<tr>
<th>Rapeseed cultivars</th>
<th>GPX (Unit/mg pro./min)</th>
<th>APX (Unit/mg pro./min)</th>
<th>CAT (μ mol/mg pro./min)</th>
<th>SOD (Unit/mg pro./min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pactol</td>
<td>64.71 ± 0.57</td>
<td>12.69 ± 0.67</td>
<td>13.69 ± 0.55</td>
<td>50.21 ± 0.74</td>
</tr>
<tr>
<td>Silvo</td>
<td>50.63 ± 0.56</td>
<td>5.55 ± 0.45</td>
<td>6.53 ± 0.45</td>
<td>42.88 ± 0.95</td>
</tr>
<tr>
<td>Topas</td>
<td>71.72 ± 0.70</td>
<td>16.82 ± 0.75</td>
<td>17.66 ± 0.63</td>
<td>56.84 ± 0.62</td>
</tr>
<tr>
<td>Serw4</td>
<td>57.79 ± 0.44</td>
<td>8.48 ± 0.40</td>
<td>9.62 ± 0.51</td>
<td>44.59 ± 0.56</td>
</tr>
<tr>
<td>Serw6</td>
<td>44.53 ± 0.37</td>
<td>2.69 ± 0.27</td>
<td>4.28 ± 0.35</td>
<td>38.42 ± 0.39</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td>0.983</td>
<td>0.978</td>
<td>0.916</td>
<td>1.233</td>
</tr>
</tbody>
</table>

abc - Mean values followed by the different letters are significantly different at P<0.05. Values are expressed as the means ± SD of three independent assays.

DISCUSSIONS

Differences in some biochemical composition among different genotypes of rape seeds, including GSH, Ascorbate and phenolic compounds, have generated remarkable interest based on positive reports of their antioxidant properties and ability to serve as free radical scavengers. Significant differences were found in glutathione, ascorbate, phenolic and flavonoid contents among different cultivars of rape seeds (Table 1). GSH a disulfide reductant that protects thiols group of enzymes, regenerates ascorbate (AsA) level and reacts with singlet oxygen, hydrogen peroxide and hydroxyl radicals. Therefore, GSH plays a central role in protecting plants from the active oxygen species [27]. The antioxidants compounds such as ascorbate (AsA) and glutathione (GSH) are involved in scavenging of harmful ROS species (O₂, H₂O₂, ·OH).
Recent experimental evidence has indicated that the levels of GSH and AsA could be used to sense the environmental changes and trigger an up-regulation of mechanisms involved in co-regulation of AsA, and GSH pools during environmental stress [31, 33]. The potential protective role of Brassica vegetables such as phenolic and flavonoids has been extensively studied since these phytochemicals may help in breeding programs to develop new germplasm with a high content of such useful phytochemicals.

Phenolic compounds also play an important role in the interaction between the plant and the surrounding environment. They can protect plants against the biotic (microbiological or herbivorous vermin) or abiotic (polluted air, ions of heavy metals, UV-B radiation) stress [3]. Rapeseed meal has a high content of phenolic acid esters, mainly sinapate esters, which have been shown to cause a dark color and a bitter taste in rapeseed meal and derived protein products.

On the basis of the obtained results, it was found that Topas cultivar had the highest total phenolic content (35.4 mg/g d.w.), which is shown table 1. Phenolic compounds content in rapeseed meal at the level of 1080.2 – 1807 mg/100g [47]. Whereas, it obtained 17.2 to 22.9 mg/g total phenolic compounds in rapeseed meal depending on the temperature and time of extraction using 70% and 100% methanol [5]. Phenolic acids are natural hydrophilic antioxidants, which occur ubiquitously in vegetables oils, spices and aromatic herbs [50]. The most active rapeseed meal phenolic fraction contained several classes of phenolic compounds including phenolic acids, flavones and flavonols [25]. Potential genotypes with desired phenolic levels may play an important role in the future for the development of new and improved cultivars delivering potential health benefits. Total flavonoid in oil seeds is indicative of the total antioxidative activity due to the availability of the phenolic hydrogens, as hydrogen-donating radical scavengers [39, 22]. In this concern, seeds of five different flax cultivars named (Sakha 1, Sakha 2, Giza 8, Lithuania and Aryana) were tested to assess their nutritional value using different parameters such as total phenolics and total flavonoids contents [11]. The authors found that Sakha 1, Sakha 2 and Aryana had lower total flavonoids (16.10, 14.43 and 12.94 mg/100 g d.w.) than Giza 8 and Lithuania (19.98 and 19.51 mg/100 g d.w.) respectively. Additionally, previous studies have shown that some flavonoid components such as quercetin had anticancer activities and were able to inhibit cancer cell growth [9, 44]. Hence, the results of this research showed that phenolic and flavonoid are important components of rapeseeds, and some of its pharmacological effects could be attributed to the presence of these valuable constituents as stated by [1]. Also, both genetic and environmental effects create a significant variation in the amount and quality of each of these constituents.

Sinapic acid is the most common phenolic acid in rapeseed, and a powerful scavenger of free radicals [41, 57]. While the great stability of rapeseed oils, in conditions of oxidation, is due to the presence of an elevated rate of natural antioxidants, most of which important are phenolics. These components are essential for protection of poly unsaturated fatty acids in plants and animals deterioration [46]. Finally, these results provide useful and important information for researchers in order to understand the antioxidant capacity and functional value of rapeseeds for the food and nutraceutical industries.

enzymes activity among rape seeds (Table 2). Our results are in agreement with El-Beltagi et al., [12] who found remarkable differences in the activities of (GPX, APX, CAT and SOD) at three flax cultivars (Sakha 1, Sakha 2 and Giza 8). Additionally, significant different in the activities of (GPX, CAT and SOD) at four cultivars canola was found (Dunkled, CON-III, Rainbow and Cyclone) [2]. Antioxidant defense enzymes such as superoxide distumase (SOD), catalase (CAT), ascorbic peroxidase (APX), peroxidase (POD), glutathione reductase (GR) and monodehydroascorbate reductase (MDAR) are the systems designed to minimize the concentrations of superoxide and hydrogen peroxide. Superoxide-dismutase (SOD) catalyzes the dismutation of superoxide into oxygen and hydrogen peroxide. (H₂O₂) is eliminated by catalase and peroxidases, which include both enzymic and non-enzymic H₂O₂ degradation [42].

The results obtained from SDS-PAGE electrophoresis (Fig. 2) showed that the method provides a powerful tool for reliable variety identification based on genetic differences in seed storage protein composition among different varieties of *Brassica napus*. Generally, the electrophoretically separated protein in rapeseeds cultivars revealed (i) quantitative decline in certain proteins, (ii) rise in levels of other proteins, (iii) some proteins remained unchanged, and (iv) *de novo* induction of specific proteins. These alterations ranged in molecular weight from as low as 12 KDa to as high as 116 KDa. From the general picture of seeds protein emerging from this work, one point is noteworthy, less protein alterations were scored among cultivars, and it is possible that this alteration reflect their relative sensitivities to both genetic and environmental effects.

No report on SDS-PAGE of seed protein of *Brassica* varieties of Egypt is available, so it seems to say that SDS-PAGE technique has proven to be a useful tool in supporting classical taxonomy studies [56]. It was possible to distinguish certain genotypes based on seed protein. Landraces are a useful source of genetic variation and the greater the variation, the greater the chances of a landrace possessing genes of gene combinations of interest to plant breeders [6]. The high stability of seed protein profile and its additive nature make seed protein electrophoresis a powerful tool in elucidating the origin and the evolution of cultivated plants [28].

Similarly, a similar electrophoretic pattern of protein among the cultivars was reported in sunflower and lettuce, respectively [45, 7]. Polypeptide expression variation depends upon the different developmental stages due to differential gene expression of concerned structural or regulatory genes, which are under the control of master gene. Polypeptides, polymorphic for presence or absence could be potentially used as marker to decipher the differentiation pathway and selection of organogenic potential callus or tissue [18]. The protein expression differences may be caused by certain biochemical alterations at the cellular level of the studied callus cultures.

The present work concluded that, significant variations among rapeseeds cultivars in glutathione, ascorbate, and total phenolic, flavonoid contents were observed. The extract of topas cultivar recorded the highest antioxidant activity, while the lowest value was detected in serv 6. Also, the highest value of antioxidant enzymes activity (GPX, APX, CAT and SOD) was found in topas cultivar while the lowest activities were detected in serv 6. Different variation among rapeseed cultivars were noticed in the protein profile. Thus, our results could be used for developing rapeseed cultivars with increased health promoting compounds due to its extensive consumption in the world.

REFERENCES

El-Beltagi, H.S., Mohamed, A.A., Mekki, B. El-Din B. - Differences in some constituents, enzymes activity and electrophoretic characterization of different rapeseed (Brassica napus L.) cultivars

Received: 3 February 2011 Accepted: 4 April 2011 Published Online: 12 April 2011 Analele Universităţii din Oradea – Fascicula Biologie http://www.bioresearch.ro/revistaen.html Print-ISSN: 1224-5119 e-ISSN: 1844-7589 CD-ISSN: 1842-6433